A radial basis function partition of unity collocation method for convection-diffusion equations ⋆

نویسنده

  • A. Safdari-Vaighani
چکیده

Numerical solution of multi-dimensional PDEs is a challenging problem with respect to computational cost and memory requirements, as well as regarding representation of realistic geometries and adaption to solution features. Meshfree methods such as global radial basis function approximation have been successfully applied to several types of problems. However, due to the dense linear systems that need to be solved, the computational cost grows rapidly with dimension. In this paper, we instead propose to use a locally supported RBF collocation method based on a partition of unity approach to numerically solve time-dependent PDEs. We investigate the stability and accuracy of the method for convection-diffusion problems in two space dimensions as well as for an American option pricing problem. The numerical experiments show that we can achieve both spectral and high-order algebraic convergence for convection-diffusion problems, and that we can reduce the computational cost for the option pricing problem by adapting the node layout to the problem characteristics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Radial Basis Function Partition of Unity Collocation Method for Convection-Diffusion Equations Arising in Financial Applications

Meshfree methods based on radial basis function (RBF) approximation are of interest for numerical solution of partial differential equations (PDEs) because they are flexible with respect to geometry, they can provide high order convergence, they allow for local refinement, and they are easy to implement in higher dimensions. For global RBF methods, one of the major disadvantages is the computat...

متن کامل

Space-time radial basis function collocation method for one-dimensional advection-diffusion problem

The parabolic partial differential equation arises in many application of technologies. In this paper, we propose an approximate method for solution of the heat and advection-diffusion equations using Laguerre-Gaussians radial basis functions (LG-RBFs). The results of numerical experiments are compared with the other radial basis functions and the results of other schemes to confirm the validit...

متن کامل

Finite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients

In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...

متن کامل

Global and local radial basis function collocation methods for solving convection-diffusion equations Métodos de colocación de función de base globales y locales radiales para solucionar ecuaciones de difusión de convección

In order to assess the performance of some meshless methods based on Radial Basis Function (RBF) Collocation, it is presented a comprehensive comparison between global and multi-domain formulations for solving convection-diffusion equations. Global formulations included are the symmetric or Fasshauer’s method and the overlapping two-domain decomposition method (the classical additive Schwarz te...

متن کامل

THE COMPARISON OF EFFICIENT RADIAL BASIS FUNCTIONS COLLOCATION METHODS FOR NUMERICAL SOLUTION OF THE PARABOLIC PDE’S

In this paper, we apply the compare the collocation methods of meshfree RBF over differential equation containing partial derivation of one dimension time dependent with a compound boundary nonlocal condition.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013